CPT Chapter Limits and Continuity

CA CPT Exam  

With Anand.Duration:4hrs25min

Limits and Continuity Duration (min:sec)
{modal https://www.youtube.com/embed/fMa4J8ExCeE?autoplay=1;rel=0|width=780|height=439|title=Overview}Overview{/modal} 07:49
{modal https://www.youtube.com/embed/lkwOYbOV-ng?autoplay=1;rel=0|width=780|height=439|title=What is Limit}What is Limit{/modal} 18:21
{modal https://www.youtube.com/embed/9VtwhxEUaeY?autoplay=1;rel=0|width=780|height=439|title=Limit with graph}Limit with graph{/modal} 03:35
{modal https://www.youtube.com/embed/AqHhhtsDy18?autoplay=1;rel=0|width=780|height=439|title=Basics of Limit}Basics of Limit{/modal} 24:27
{modal https://www.youtube.com/embed/RSzHZWr7Ks4?autoplay=1;rel=0|width=780|height=439|title=Avoid Indeterminant1}Avoid Indeterminant1{/modal} 24:41
{modal https://www.youtube.com/embed/ucsvlv-cSfI?autoplay=1;rel=0|width=780|height=439|title=Avoid Indeterminant2}Avoid Indeterminant2{/modal} 22:02
{modal https://www.youtube.com/embed/3GYVhL9ENUs?autoplay=1;rel=0|width=780|height=439|title=How to solve infinity problem}How to solve infinity problem{/modal} 02:14
{modal https://www.youtube.com/embed/QWPzznaOQdU?autoplay=1;rel=0|width=780|height=439|title=Infinity Problem}Infinity Problem{/modal} 21:03
{modal https://www.youtube.com/embed/fhIVjBntGCg?autoplay=1;rel=0|width=780|height=439|title=Limit Formulae}Limit Formulae{/modal} 06:19
{modal https://www.youtube.com/embed/WeooWVNneOE?autoplay=1;rel=0|width=780|height=439|title=Formulae Example1}Formulae Example1{/modal} 16:42
{modal https://www.youtube.com/embed/LqXwrhEnFgw?autoplay=1;rel=0|width=780|height=439|title=Formulae Example2}Formulae Example2{/modal} 29:09
{modal https://www.youtube.com/embed/KBlsOrmVNiQ?autoplay=1;rel=0|width=780|height=439|title=Odd & Even Function}Odd & Even Function{/modal} 07:07
{modal https://www.youtube.com/embed/yvCwDeMELnI?autoplay=1;rel=0|width=780|height=439|title=Continuity Concept}Continuity Concept{/modal} 14:25
{modal https://www.youtube.com/embed/n28k1RpIoLw?autoplay=1;rel=0|width=780|height=439|title=Function Discontinuous}Function Discontinuous{/modal} 03:54
{modal https://www.youtube.com/embed/l9TwJI8MAME?autoplay=1;rel=0|width=780|height=439|title=Checking Limit Exist Concept}Checking Limit Exist Concept{/modal} 03:57
{modal https://www.youtube.com/embed/9XafNpJUn1I?autoplay=1;rel=0|width=780|height=439|title=Example Checking Limit Exist}Example Checking Limit Exist{/modal} 12:58
{modal https://www.youtube.com/embed/JuE0PNRN6dU?autoplay=1;rel=0|width=780|height=439|title=Check Continuity-Concept}Check Continuity-Concept{/modal} 02:40
{modal https://www.youtube.com/embed/21rggi6rwew?autoplay=1;rel=0|width=780|height=439|title=Check Countinity-Example1}Check Countinity-Example1{/modal} 17:28
{modal https://www.youtube.com/embed/OsXigh0yNNg?autoplay=1;rel=0|width=780|height=439|title=Check Countinity-Example2}Check Countinity-Example2{/modal} 23:18
{modal https://www.youtube.com/embed/ye-RDos1kF4?autoplay=1;rel=0|width=780|height=439|title=Conclusion}Conclusion{/modal} 02:37
Total 04:24:46

What are Limits?
Basic of Limit
Avoid Indeterminant
Infinity Problem
Formula based Problem
Condition for discontinuous
Check Limit Exist or Not
Check Continuous or Not

Avoid Indeterminant-

lim (4x4+5x3+7x2+6x)/(5x5+7x2+x) is equal to
x →0
a) 6 b) 5 c) -6 d) none of these

lim(x2-5x+6)(x2-3x+2)/(x3-3x2+4) is equal to
x →2

a)1/3 b)3 c) -⅓ ) none of these

lim (4-x2)/3-√(x2+5) is equal to
x →2
a) 6 b) 1/6 c) –6 d) none of these

lim (x2-1)/(√3x+1-√5x-1) is evaluated to be
x →1
a) 4 b) ¼ c) -4 d)none of these


f(x) ex-1 = loge = logee =1
x →0 x

f(x) ax-1 = loga = logea
x →0 x

f(x) log(1+x) = loge = 1
x →0 x

f(x) loga(1+x) = logae
x →0 x

f(x) log(1+1/x) = loge = 1
x →∞ 1/x

f(x) (1+1/x )x=e
x →∞

f(x) (1+x )1/x=e
x →∞

Formula based Problem-

lim (e2x-1)/x is equal to
x →0
(b) 2
(c) e5
(d) none of these.

Lim x→0 (2e1/x -3x)/(e1/x +x)=-


lim (5x +3x -2)/x will be equal to
x →0
a) loge15 b) log (1/15) c) log e d) none of these

Odd & Even Function-

if f(x) is an odd function then

a){f(-x)+f(x)}/2 is an even function
b){|x|+1} is even when [x] = the integer x≤
c) [f(x)+f(-x)]/2 is neither even or odd
d) none of these


When a function is discontinuous-
A function will be discontinuous when the function is indeterminate.

The points of discontinuity of the function :
f(x) = (2x2+6x-5)/(12x2+x-20) are, when x is

a)-4/5 and 5/3
b)-4/3 and 5/4
c)4/5 and -5/3
d)4/3 and -5/4

Checking Limit Exist or Not-

If f(x)=(x+1)/√(6x2+3)+3x then lim f(x) and f(-1)
x →-1
a) both exists
b) one exists and other does not exist
c) both do not exists
d)none of these

lim y→0 (3y+ |y|)/(7y -5|y|)=
d)does not exist

Checking Continuity-

A function f(x) is defined as follows
f(x) = x2 when 0 < x <1
= x when 1 <_ x < 2
= (1/4) x3 when 2 < x < 3
Now f(x) is continuous at
a) x = 1 b) x = 3 c) x = 0 d) none of these.

What are Limits?
Basic of Limit
Avoid Indeterminant
Infinity Problem
Formula based Problem
Condition for discontinuous
Check Limit Exist or Not
Check Continuous or Not


CPT Exam Exposure

Take Quiz

next toDifferentiation

back toSets Functions and Relations

 Like our ca-cpt courseShow you appreciate by sharing!



Fields marked with * are required

Got a question?